Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
J Org Chem ; 89(4): 2104-2126, 2024 Feb 16.
Artigo em Inglês | MEDLINE | ID: mdl-37267444

RESUMO

This work describes the reactivity and properties of fluorinated derivatives (F-PD and F-PDO) of plasmodione (PD) and its metabolite, the plasmodione oxide (PDO). Introduction of a fluorine atom on the 2-methyl group markedly alters the redox properties of the 1,4-naphthoquinone electrophore, making the compound highly oxidizing and particularly photoreactive. A fruitful set of analytical methods (electrochemistry, absorption and emission spectrophotometry, and HRMS-ESI) have been used to highlight the products resulting from UV photoirradiation in the absence or presence of selected nucleophiles. With F-PDO and in the absence of nucleophile, photoreduction generates a highly reactive ortho-quinone methide (o-QM) capable of leading to the formation of a homodimer. In the presence of thiol nucleophiles such as ß-mercaptoethanol, which was used as a model, o-QMs are continuously regenerated in sequential photoredox reactions generating mono- or disulfanylation products as well as various unreported sulfanyl products. Besides, these photoreduced adducts derived from F-PDO are characterized by a bright yellowish emission due to an excited-state intramolecular proton transfer (ESIPT) process between the dihydronapthoquinone and benzoyl units. In order to evidence the possibility of an intramolecular coupling of the o-QM intermediate, a synthetic route to the corresponding anthrones is described. Tautomerization of the targeted anthrones occurs and affords highly fluorescent stable hydroxyl-anthraquinones. Although probable to explain the intense visible fluorescence emission also observed in tobacco BY-2 cells used as a cellular model, these coupling products have never been observed during the photochemical reactions performed in this study. Our data suggest that the observed ESIPT-induced fluorescence most likely corresponds to the generation of alkylated products through reduction species, as demonstrated with the ß-mercaptoethanol model. In conclusion, F-PDO thus acts as a novel (pro)-fluorescent probe for monitoring redox processes and protein alkylation in living cells.


Assuntos
Indolquinonas , Vitamina K 3/análogos & derivados , Mercaptoetanol , Indolquinonas/química , Antraquinonas
2.
Metabolites ; 11(9)2021 Aug 25.
Artigo em Inglês | MEDLINE | ID: mdl-34564386

RESUMO

Vismione H (VH) is a fluorescent prenylated anthranoid produced by plants from the Hypericaceae family, with antiprotozoal activities against malaria and leishmaniosis. Little is known about its biosynthesis and metabolism in plants or its mode of action against parasites. When VH is isolated from Psorospermum glaberrimum, it is rapidly converted into madagascine anthrone and anthraquinone, which are characterized by markedly different fluorescent properties. To locate the fluorescence of VH in living plant cells and discriminate it from that of the other metabolites, an original strategy combining spectral imaging (SImaging), confocal microscopy, and non-targeted metabolomics using mass spectrometry, was developed. Besides VH, structurally related molecules including madagascine (Mad), emodin (Emo), quinizarin (Qui), as well as lapachol (Lap) and fraxetin (Fra) were analyzed. This strategy readily allowed a spatiotemporal characterization and discrimination of spectral fingerprints from anthranoid-derived metabolites and related complexes with cations and proteins. In addition, our study validates the ability of plant cells to metabolize VH into madagascine anthrone, anthraquinones and unexpected metabolites. These results pave the way for new hypotheses on anthranoid metabolism in plants.

3.
Front Plant Sci ; 12: 665206, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34093623

RESUMO

The remarkable diversity of sterol biosynthetic capacities described in living organisms is enriched at a fast pace by a growing number of sequenced genomes. Whereas analytical chemistry has produced a wealth of sterol profiles of species in diverse taxonomic groups including seed and non-seed plants, algae, phytoplanktonic species and other unicellular eukaryotes, functional assays and validation of candidate genes unveils new enzymes and new pathways besides canonical biosynthetic schemes. An overview of the current landscape of sterol pathways in the tree of life is tentatively assembled in a series of sterolotypes that encompass major groups and provides also peculiar features of sterol profiles in bacteria, fungi, plants, and algae.

4.
Chem Biodivers ; 16(4): e1800506, 2019 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-30618175

RESUMO

Ibogaine and other ibogan type alkaloids present anti-addictive effects against several drugs of abuse and occur in different species of the Apocynaceae family. In this work, we used gas chromatography-mass spectrometry (GC/MS) and principal component analysis (PCA) in order to compare the alkaloid profiles of the root and stem barks of four Mexican Tabernaemontana species with the root bark of the entheogenic African shrub Tabernanthe iboga. PCA demonstrated that separation between species could be attributed to quantitative differences of the major alkaloids, coronaridine, ibogamine, voacangine, and ibogaine. While T. iboga mainly presented high concentrations of ibogaine, Tabernaemontana samples either showed a predominance of voacangine and ibogaine, or coronaridine and ibogamine, respectively. The results illustrate the phytochemical proximity between both genera and confirm previous suggestions that Mexican Tabernaemontana species are viable sources of anti-addictive compounds.


Assuntos
Alcaloides/uso terapêutico , Apocynaceae/química , Comportamento Aditivo/tratamento farmacológico , Tabernaemontana/química , Alcaloides/química , Alcaloides/metabolismo , Apocynaceae/metabolismo , Cromatografia Gasosa-Espectrometria de Massas , México , Conformação Molecular , Análise de Componente Principal , Especificidade da Espécie , Tabernaemontana/metabolismo
5.
Chemosphere ; 194: 125-130, 2018 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-29197815

RESUMO

Cigarette butts (CGB) are equivalent to plastic litter in terms of number of pieces released directly into the environment. Due to their small size and social use, CGB are commonly found in natural systems, and several questions have been raised concerning the contaminants that are released with CGB, including metals, organic species, and nanoparticles. The aim of the present study is to investigate the release of nanoscale particles from CGB by leaching with rainwater. After seven days of passive stirring of both smoked and unsmoked CGB in synthetic rainwater, the solutions were treated and analyzed by specific nano-analytical methods. Our results demonstrate the release of 4.12 ± 0.24% (w/CGB) organic carbon in the range of 10 nm up to 400 nm and with a z-average diameter of 202.4 ± 74.1 nm. The fractal dimension (Df) of the nanoscale particles ranges from 1.14 to 1.52 and suggests a soot (carbon)-based composition. The analysis of some metallic species (As, Pb, Cd, Cu, Ni, Cr, Co, Al, Mn, Zn, and Fe) shows that these species are essentially attached to the nanoscale particles per gram of carbon released. By considering the diffusion of the nanomaterials into different environmental compartments, our results suggest a new emerging and global contamination of the environment by cigarette butts, comparable to plastic litter, which urgently needs to be considered.


Assuntos
Monitoramento Ambiental/métodos , Poluição Ambiental , Nanopartículas/efeitos adversos , Produtos do Tabaco/efeitos adversos , Carbono , Metais/análise , Metais Pesados/análise , Fumaça
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...